A Simplex Cut-Cell Adaptive Method for High-Order Discretizations of the Compressible Navier-Stokes Equations
نویسندگان
چکیده
While an indispensable tool in analysis and design applications, Computational Fluid Dynamics (CFD) is still plagued by insufficient automation and robustness in the geometryto-solution process. This thesis presents two ideas for improving automation and robustness in CFD: output-based mesh adaptation for high-order discretizations and simplex, cut-cell mesh generation. First, output-based mesh adaptation consists of generating a sequence of meshes in an automated fashion with the goal of minimizing an estimate of the error in an engineering output. This technique is proposed as an alternative to current CFD practices in which error estimation and mesh generation are largely performed by experienced practitioners. Second, cut-cell mesh generation is a potentially more automated and robust technique compared to boundary-conforming mesh generation for complex, curved geometries. Cut-cell meshes are obtained by cutting a given geometry of interest out of a background mesh that need not conform to the geometry boundary. Specifically, this thesis develops the idea of simplex cut cells, in which the background mesh consists of triangles or tetrahedra that can be stretched in arbitrary directions to efficiently resolve boundary-layer and wake features. The compressible Navier-Stokes equations in both two and three dimensions are discretized using the discontinuous Galerkin (DG) finite element method. An anisotropic h-adaptation technique is presented for high-order (p > 1) discretizations, driven by an output-error estimate obtained from the solution of an adjoint problem. In two and three dimensions, algorithms are presented for intersecting the geometry with the background mesh and for constructing the resulting cut cells. In addition, a quadrature technique is proposed for accurately integrating high-order functions on arbitrarily-shaped cut cells and cut faces. Accuracy on cut-cell meshes is demonstrated by comparing solutions to those on standard, boundary-conforming meshes. In two dimensions, robustness of the cut-cell, adaptive technique is successfully tested for highly-anisotropic boundary-layer meshes representative of practical high-Re simulations. In three dimensions, robustness of cut cells is demonstrated for various representative curved geometries. Adaptation results show that for all test cases considered, p = 2 and p = 3 discretizations meet desired error tolerances using fewer degrees of freedom than p = 1. Thesis Supervisor: David L. Darmofal Title: Associate Professor of Aeronautics and Astronautics
منابع مشابه
An Adaptive Simplex Cut-Cell Method for Discontinuous Galerkin Discretizations of the Navier-Stokes Equations
A cut-cell adaptive method is presented for high-order discontinuous Galerkin discretizations in two and three dimensions. The computational mesh is constructed by cutting a curved geometry out of a simplex background mesh that does not conform to the geometry boundary. The geometry is represented with cubic splines in two dimensions and with a tesselation of quadratic patches in three dimensio...
متن کاملA triangular cut-cell adaptive method for high-order discretizations of the compressible Navier-Stokes equations
This paper presents a mesh adaptation method for higher-order (p > 1) discontinuous Galerkin (DG) discretizations of the two-dimensional, compressible Navier–Stokes equations. A key feature of this method is a cut-cell meshing technique, in which the triangles are not required to conform to the boundary. This approach permits anisotropic adaptation without the difficulty of constructing meshes ...
متن کاملOutput-based Adaptive Meshing Using Triangular Cut Cells
This report presents a mesh adaptation method for higher-order (p > 1) discontinuous Galerkin (DG) discretizations of the two-dimensional, compressible Navier-Stokes equations. The method uses a mesh of triangular elements that are not required to conform to the boundary. This triangular, cut-cell approach permits anisotropic adaptation without the difficulty of constructing meshes that conform...
متن کاملAnisotropic Simplex Mesh Adaptation by Metric Optimization for Higher-order Dg Discretizations of 3d Compressible Flows
We extend our optimization-based framework for anisotropic simplex mesh adaptation to three dimensions and apply it to high-order discontinuous Galerkin discretizations of steady-state aerodynamic flows. The framework iterates toward a mesh that minimizes the output error for a given number of degrees of freedom by considering a continuous optimization problem of the Riemannian metric field. Th...
متن کاملp-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier–Stokes equations
We present a p-multigrid solution algorithm for a high-order discontinuous Galerkin finite element discretization of the compressible Navier–Stokes equations. The algorithm employs an element line Jacobi smoother in which lines of elements are formed using coupling based on a p = 0 discretization of the scalar convection–diffusion equation. Fourier analysis of the two-level p-multigrid algorith...
متن کامل